Botanica Pacifica

Research paper

Botanica Pacifica. A journal of plant science and conservation 2012. 1(1):97-107.
Article first published online: 10 SEN 2012 | DOI: 10.17581/bp.2012.01105

Circumboreal Gradients in Plant Species and Functional Types

Andrew N. Gillison
Center for Biodiversity Management, P.O. Box 120, Yungaburra, Queensland, 4884 Australia

Questions: 1) Do patterns of richness and composition of vascular plant species and plant functional types (PFTs) vary consistently along environmental gradients in high northern latitudes? 2) What factors influence their distribution? 3) Are there implications for mapping and managing vegetation?
Location: Circumglobal 40º to 70ºN.
Methods: A standard sampling protocol was used to record vegetation in 111 (40×5 m) transects focusing on the circumboreal zone but within a broader environmental context including Arctic Fjaeldmark and tundra, upland continental and maritime meadows, coastal dunes, desert steppe, boreal shrubland and notthern temperate broadleaf- conifer forest. Variables included vascular plant species and PFTs (functional modi), vegetation structure, plant functional complexity (PFC) Shannon and Simpson’s (functional) diversity indices and site physical features including key climate elements. Multidimensional scaling (MDS) and standard regression analysis were used to explore regional vegetation gradients.
Results: Highest counts of species, PFTs, PFC, and functional diversity indices were recorded in the Russian Far East. Most intensive clustering was revealed through MDS of species composition whereas analyses of species-weighted PFTs revealed broader overlapping gradients linking Fennoscandia and western Europe with north America. Central Mongolian sites were clearly separate from those in the Russian Far East that overlapped with central Europe and the high Caucasus. PFT-based data showed more significant linkages with vegetation structure and climate variables than species or individual traits.
Conclusions: Species and PFT-based data provide complementary support for the existence of identifiable vegetation gradients within the circumboreal zone. Apart from floristic evolutionary factors, vegetation response to disturbance and substrate appears to be secondary to climate as the primary environmental determinant. Unified systematic sampling and readily transferable technology are needed to better understand the complex factors influencing vegetation patterns in these high latitudes.

Гиллисон Э.Н. Циркумбореальные градиенты видов растений и функциональных типов. Вопросы: 1) Закономерны ли изменения спектров видового состава и функциональных типов сосудистых растений вдоль экологических градиентов в высоких северных широтах? 2) Какие факторы влияют на их распределение? 3) Возможно ли применение данных закономерностей для отображения растительного покрова? Географическая привязка: В пределах широт от 40º до 70º N. Методы: стандартные геоботанические описания растительности на 111 (40×5 м) трансектах в циркумбореальной зоне. В качестве переменных использованы виды сосудистых растений и функциональные типы растений (ФТР), структура растительности, индексы сложности структуры растительного покрова, индексы разнообразия Шеннона и Симпсона, физические характеристики местообитаний, включая ключевые параметры климата. Многомерное шкалирование (MDS) и стандартный регрессионный анализ были использованы для изучения региональных градиентов растительности. Результаты: Наибольшие показатели видового богатства, ФТР и разнообразия функциональных параметров было отмечено на российском Дальнем Востоке. Кластеризация по видовому богатству получена по методу многомерного шкалирования. Анализ спектров ФТР показал сильные связи Фенноскандии и Западной Европы с Северной Америкой. Районы Центральной Монголии отличаются от российского Дальнего Востока, спектр ФТР которого оказался сходным с таковым центральной Европы и высокогорного Кавказа. ФТР проявляют более тесные связи со структурой растительности и климатическими переменными, чем видой состав и видовое богатство. Выводы: Виды и ФТР представляют дополнительный инструмент для идентификации градиентов растительности в циркумбореальный зоне. Помимо флористических и эволюционных факторов, климат является основным детерминантом распределения растительного покрова, а реакция растительности на субстрат или экзогенные факторы выходит на второй план. Методика систематического отбора проб и несложная техника сбора данных позволяет лучше понять факторы, оказывающие влияние на закономерности распределения растительности в высоких широтах. (Переведено редколлегией).

Keywords: circumboreal gradients, plant functional types, uniform sampling protocol, циркумбореальные градиенты, функциональный тип растений, универсальный протокол сбора данных

FULL TEXT PDF   SUPPLEMENTARY MATERIALS


References

Ahti T, Hamet-Ahti L & Jalas J 1968. Vegetation zones and their sections in northwestern Europe. Annales Botanici Fennici 5:169-211.

Baldocchi D, Kelliher FM, Black TA & Jarvis P 2000. Climate and vegetation controls on boreal zone energy exchange. Global Change Biology 6(S1):69-83. CrossRef

Belbin L 1991. Semi-strong Hybrid Scaling, a new ordination algorithm. Journal of Vegetation Science 2(4):491-496. CrossRef

Belbin L 2008. PATN. http://www.patn.com.au. Accessed 30 April 2012.

Bohn U, Gollub G, Hettwer C, Neuhauslova Z, Schlueter H & Weber H 2003. Karte der naturlichen Vegetation Europas. Map of the natural vegetation of Europe. Federal Agency for Nature Conservation, Bonn.

Box EO 1981. Macroclimate and plant forms: An introduction to predictive modeling in phytogeography. Tasks for Vegetation Science -1. Dr. W. Junk, The Hague, 258 pp. CrossRef

Box EO 1996. Plant functional types and climate at the global scale. Journal of Vegetation Science 7(3):309-320. CrossRef

Bradley SW, Rowe JS & Tarnocai C 1982. An ecological land survey of the Lockhart River map area, Northwest Territories. In: Ecological Land Classification. Series 16. Lands Directorate, Environment Canada, Ottawa, Ontario, 150 pp.

Brandt JP 2009. The extent of the North American boreal zone. Environmental Review 17(1):101-161. CrossRef

Brooks JR, Flanagan LB, Buchmann N & Ehleringer JR 1997. Carbon isotope composition of boreal plants: functional grouping of life forms. Oecologia 110(3):301-311. CrossRef

Bugmann H 1996. Functional types of trees in temperate and boreal forests: classification and testing. Journal of Vegetation Science 7(3):359-370. CrossRef

Chapin FS III 2003. Effects of plant traits on ecosystem and regional processes: a conceptual framework for predicting the consequences of global change. Annals of Botany 91:455-463. CrossRef

Chapin FS III, Bret-Harte MS, Hobbie SE & Zhong H 1996. Plant functional types as predictors of transient responses of Arctic vegetation to global change. Journal of Vegetation Science 7(3):347-358. CrossRef

Chapin FS III 1993. Functional role of growth forms in ecosystem and global processes. In: Scaling physiological processes. Leaf to globe (J. R. Ehleringer & C. B. Field, eds.), pp. 287-312, Academic Press, London. CrossRef

Craine JM, Froehle DG, Tilman DA, Wedin FS & Chapin FS III 2001. The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients. Oikos 93(2):274-285. CrossRef

Diaz S & Cabido M 1997. Plant functional types and ecosystem function in relation to global change. Journal of Vegetation Science 8(4):463-474. CrossRef

Douma JC, de Haan MWA, Aerts R, Witte JPM & van Bodegom PM 2012. Succession-induced trait shifts across a wide range of NW European ecosystems are driven by light and modulated by initial abiotic conditions. Journal of Ecology 100(2):366-380. CrossRef

Ermakov N & Morozova O 2011. Syntaxonomical survey of boreal oligotrophic pine forests in northern Europe and Western Siberia. Applied Vegetation Science 14(4):524-536. CrossRef

Eviner VT & Chapin FS III 2003. Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Annual Reviews of Ecology and Systematics 34:455-485. CrossRef

Gillison AN & Carpenter G 1997. A generic plant functional attribute set and grammar for dynamic vegetation description and analysis. Functional Ecology 11(6):775-783. CrossRef

Gillison AN & Liswanti N 2004. Assessing biodiversity at landscape level: the importance of environmental context. Agriculture, Ecosystems and Environment 104:75-86. CrossRef

Gillison AN 2002. A generic, computer-assisted method for rapid vegetation classification and survey: tropical and temperate case studies. Conservation Ecology 6(3) [online] http://www.consecol.org/vol6/iss2/art3

Gillison AN 2012. Plant functional types and traits at the community, ecosystem and world level. In: Vegetation Ecology (E. van der Maarel & J. Franklin, eds.), chapter 12, Wiley-Blackwell, Oxford, UK (in press).

Gillison AN, Jones DT, Susilo FX & Bignell DE 2003. Vegetation indicates diversity of soil macroinvertebrates: a case study with termites along a land-use intensification gradient in lowland Sumatra. Organisms, Diversity & Evolution 3(2): 111-126. CrossRef

Hamet-Ahti L 1979. The dangers of using the timberline as the "zero" line in comparative studies on altitudinal vegetation zones. Phytocoenologia 6:49-54.

Hamet-Ahti L 1981. The boreal zone and its biotic subdivision. Fennia 159(1):69-75.

Harrison SP & Prentice IC 2003. Climate and CO2 controls on global vegetation distribution at the last glacial maximum: analysis based on palaeovegetation data, biome modelling and palaeoclimate simulations. Global Change Biology 9(7):983-1004. CrossRef

Hickler T, Smith B, Sykes MT, Davis MB, Sugita S & Walker K 2004. Using a general vegetation model to simulate vegetation dynamics in northeastern U.S.A. Ecology 85(2):519-530. CrossRef

Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE & Schulze ED 1996. A global analysis of root distribution for terrestrial biomes. Oecologia 108(3):389-411. CrossRef

Kaplan JO, Bigelow NH, Prentice IC, Harrison SP, Bartlein PJ, Christensen TR, Cramer W, Matveyeva NV, McGuire AD, Murray DF, Razzhivin VY, Smith B, Walker DA, Anderson PM, Andreev AA, Brubaker LB, Edwards ME & Lozhkin AV 2003. Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections. Journal of Geophysical Research 108:D19, 8171. CrossRef

Krestov PV & Nakamura Y 2007. Climatic controls of forest vegetation distribution in Northeast Asia. Berichte der Reinhold-Tuxen-Gesellschaft 19:131-145.

Krestov PV 2003. Forest Vegetation of Easternmost Russia (Russian Far East). In: Forest vegetation of Northeast Asia (J. Kolbek et al., eds.), pp. 93-180, Kluwer Academic Publishers, Dordrecht. CrossRef

Krestov PV, Song JS, Nakamura Y & Verkholat VP 2006. A phytosociological survey of the deciduous temperate forests of mainland Northeast Asia. Phytocoenologia 36(1):77-150. CrossRef

Krestov PV 2011. Climatic control of eastern Russia in the Holocene. In: Northeast Asia Eco-Forum on Sustainable Development and Regional Ecological Security (Abstracts), Shenyang, China. http://www.iae.cas.cn/qt/tzgg/201109/W020110920572492470881.doc

Lavorel S, Grigulis K, Lamarque P, Colace MP, Garden D, Girel J, Pellet G & Douzet R 2011. Using plant functional traits to understand the landscape distribution of multiple ecosystem services. Journal of Ecology 99(1):135-147. CrossRef

Lavrenko EM & Sochova VB (eds.) 1954. Geobotanical map of the USSR (scale 1:4 million). Komarov Botanical Institute, Leningrad (in Russian).

Lewandowski AS, Noss RF & Parsons DR 2010. The effectiveness of surrogate taxa for the representation of biodiversity. Conservation Biology 24(5):1367-1377. CrossRef

Liira J, Schmidt T, Aavik T, Arens P, Augenstein I, Bailey D, Billeter R et al. 2008. Plant functional group composition and large-scale species richness in European agricultural landscapes. Journal of Vegetation Science 19(1):3-14. CrossRef

Nakamura Y, Krestov PV & Omelko AM 2007. Bioclimate and zonal vegetation in Northeast Asia: first approximation to an integrated study. Phytocoenologia 37(2-3):443-470. CrossRef

Oleson KW, Lawrence DM, Bonan GB, Flanner MG, Kluzek E, Lawrence PJ, Levis S et al. 2010. Technical Description of version 4.0 of the Community Land Model (CLM). Climate and Global Dynamics Division National Center For Atmospheric Research. Technical Note NCAR/TN-478+STR.

Olson DM & Dinerstein E 1998. The Global 200: a representation approach to conserving the Earth's most biologically valuable ecoregions. Conservation Biology 12(3):502-515. CrossRef

Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D'Amico JA et al. 2001. Terrestrial Ecoregions of the World: A New Map of Life on Earth. BioScience 51(11):933-938. CrossRef

Peppe DJ, Royer DL, Cariglino B, Oliver SY, Newman S, Leight E, Enikolopov G et al. 2011. Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytologist 190(3):724-739. CrossRef

Posada JM, Lechowicz MJ & Kitajima K 2009. Optimal photosynthetic use of light by tropical tree crowns achieved by adjustment of individual leaf angles and nitrogen content. Annals of Botany 103(5):795-805. CrossRef

Qian H, Krestov PV, Fu PY, Wang QL, Song JS & Chourmouzis C 2003. Phytogeography of Northeast Asia. In: Forest vegetation of Northeast Asia (J. Kolbek et al., eds.), pp. 51-91, Kluwer Academic Publishers, Dordrecht. CrossRef

Qian H, Song JS, Krestov PV, Guo Q, Wu Z, Shen X & Guo X 2003. Large-scale phytogeographical patterns in East Asia in relation to latitudinal and climatic gradients. Journal of Biogeography 30(1):129-141. CrossRef

Red Book of Russian Federation (Plants and Fungi). 2008. Tovarishchestvo nauchnikh izdatelstv KMK, Moscow, 855 pp. (in Russian)

Rivas-Martinez S, Sanchez-Mata D & Costa M 1999. North American boreal and western temperate forest vegetation. (Syntaxonomical synopsis of the potential natural plant communities of North America,II.) Itinera Geobotanica 12:5-316.

Simons H 2005. Global ecological zoning for the FAO Global Forest Resources Assessment 2000. Application and analysis of the map of the Natural Vegetation of Europe. In: Application and Analysis of the Map of the Natural Vegetation of Europe (U. Bohn, C. Hettwer & G. Gollub, eds.), pp. 55-69, Bonn (Bundesamt fur Naturschutz), BfN-Skripten.

Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO et al. 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ Dynamic Global Vegetation Model. Global Change Biology 9(2):161-185. CrossRef

Sjors H 1963. Amphi-Atlantic zonation, Nemoral to Arctic. In: North Atlantic Biota and Their History (?. Love & D. Love, eds.), pp. 109-125, Pergamon Press, New York.

Smith TM, Shugart HH, Woodward FI & Burton PJ 1992. Plant functional types. In: Vegetation Dynamics and Global Change (A. M. Solomon & H. H. Shugart, eds.), pp. 272-292, Chapman & Hall, New York, NY.

Srutek M, Kolbek J, Jarolimek I & Valachovic M 2003. Vegetation-environment relationships within and among selected natural forests in North Korea. In: Forest Vegetation of Northeast Asia (J. Kolbek et al., eds.), pp. 363-382, Kluwer Academic Publishers, Dordrecht. CrossRef

Talbot SS & Meades WJ 2011. Circumboreal Vegetation Map (CBVM) -Mapping the green halo. Concept paper CAFF Strategy Series Report No. 3. http://www.iavs.org/uploads/CBVMConceptPaper.pdf

Thessler S, Ruokolainen K, Tuomisto H & Tomppo E 2005. Mapping gradual landscape-scale floristic changes in Amazonian primary rain forests by combining ordination and remote sensing. Global Ecology & Biogeography 14(4):315-325. CrossRef

Vygodskaya NN, Groisman PY, Tchebakova NM, Kurbatova JA, Panfyorov O, Parfenova EI & Sogachev AF 2007. Ecosystems and climate interactions in the boreal zone of northern Eurasia. Environmental Research Letters 2(4):(045033) (1-7). CrossRef

Walker DA, Elvebakk A, Talbot SS & Daniels FJA 2005. The Second International Workshop on Circumpolar Vegetation Classification and Mapping: a tribute to Boris A. Yurtsev. Phytocoenologia 35(4):715-726. CrossRef

Walker DA, Raynolds MK, Daniels FJA, Einarsson E, Elvebakk A, Gould WA, Katenin AE, Kholod SS, Markon CJ, Melnikov EE, Moskalenko NG, Talbot SS, Yurtsev BA & the CAVM Team. 2005. The Circumpolar Arctic Vegetation Map. Journal of Vegetation Science 16(3):267-282. CrossRef

Wardle D, Barker G, Bonner K & Nicholson K 1998. Can comparative approaches based on plant ecophysiological traits predict the nature of biotic interactions and individual plant species in ecosystems? Journal of Ecology 86(3):405-420. CrossRef

Westoby M 1998. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil 199(2):213-227. CrossRef

Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J et al. 2004. The worldwide leaf economics spectrum. Nature 428 (6985):821-827. CrossRef

Zemmrich A 2010. Plant communities along an elevational gradient under special consideration of grazing in western Mongolia. Phytocoenologia 40(2-3):91-115. CrossRef





© 2012-2022 Botanica Pacifica