Botanica Pacifica

Research paper

Botanica Pacifica. A journal of plant science and conservation 2012. 1(1):109-119.
Article first published online: 10 SEN 2012 | DOI: 10.17581/bp.2012.01106

A Topography-Based Model of the Vegetation Cover of the Lanzhinskie Mountains

Alexander M. Omelko1, Pavel V. Krestov1,2 & Anna N. Yakovleva1
1 Institute of Biology and Soil Science FEB RAS, Vladivostok, 690022, Russia
2 Botanical Garden-Institute FEB RAS, Vladivostok, 690024, Russia


By means of the GAM technique it is possible to create detailed maps of the potential vegetation for regions that are difficult to access. This is particularly important for wide mountain areas of Northeast Asia, where such maps have never been created. High-resolution DEMs permit increased prediction accuracy and modeling of complex vegetation patterns. Most vegetation types in the area are controlled mainly by the moisture regime and by regimes of sediment transport and accumulation. The relatively small amounts of rainfall in the continental climate are distributed spatially by relief elements. This creates a wide range of soil moisture regimes: from very dry, with a prolonged period of moisture deficit, to wet, without moisture deficit during the growing season at all. Therefore, moisture appears to be a critical resource in this climatic region, and it is a main differentiating factor for the vegetation. The map of potential vegetation, obtained satisfactorily, reflects altitudinal zonation and inter-zonal patterns of vegetation distribution. The area occupied by some vegetation communities is overestimated, however, due mainly to insufficient DEM resolution.

Омелько А.М., Крестов П.В., Яковлева А.Н. Модель растительного покрова Ланжинских гор на основе топографических переменных Показана возможность создания подробных карт потенциальной растительности для труднодоступных регионов с помощью техники GAM. Это особенно важно для обширных горных районов Северо-Восточной Азии, для которых такие карты до сих пор отсутствуют. Высокое разрешение матрицы высот позволяет увеличить точность прогнозирования и моделирования сложно организованного растительного покрова. Большинство типов растительности в районе контролируется режимами увлажнения, а также склоновой аккумуляции и транспортировки материала. Относительно небольшое количество осадков в условиях континентального климата распределяется в пространстве по элементам рельефа. Это создает широкий диапазон режимов увлажнения почвы: от очень сухого, с длительным периодом дефицита влаги, до хорошо увлажненного без периода дефицита влаги в течение вегетационного сезона. Таким образом, влага в данном регионе представляется важнейшим ресурсом и служит основным дифференцирующим фактором для распределения типов растительности. Карта потенциальной растительности, удовлетворительно отражает закономерности высотной зональности и распределение азональных растительных комплексов. Площадь, занимаемая некоторыми типами растительных сообществ, слегка завышена из-за недостаточного разрешения DEM.

Keywords: vegetation cover, larch forest, generalized additive model, GAM, DEM, refugium, растительный покров, лиственничные леса, генерализованная аддитивная модель, рефугиум

FULL TEXT PDF


References

Anonymous 1966-1971. Reference book on the climate of the USSR. Gidrometeoizdat, Leningrad (in Russian)

Austin MP & Smith TM 1989. A new model for the continuum concept. Vegetatio 83:35-47. CrossRef

Austin MP 1999. The potential contribution of vegetation ecology to biodiversity research. Ecography 22:465-484. CrossRef

Austin MP 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling.Ecological Modeling 157:101-118. CrossRef

Brown DG 1994. Predicting vegetation types at treeline using topography and biophysical disturbance variables. Journal of Vegetation Science 5:641-656. CrossRef

Cawsey EM, Austin MP & Baker BL 2002. Regional vegetation mapping in Australia: a case study in the practical use of statistical modeling. Biodiversity and Conservation 11:2239-2274. CrossRef

Clarkson BR, Schipper LA & Lehmann A 2004. Vegetation and peat characteristics in the development of lowland restiad peat bogs, North Island, New Zealand. Wetlands 24:133-151. CrossRef

del Barrio G, Alvera B, Puigdefabregas J & Diez C 1997. Response of high mountain landscape to topographic variables: Central Pyrenees. Landscape Ecology 12:95-115. CrossRef

Dirnbock T, Dullinger S & Grabherr G 2003. A regional impact assessment of climate and land-use change on alpine vegetation. Journal of Biogeography 30:401-417. CrossRef

Ermakov NB 2003. Diversity of boreal vegetation of Northern Asia. Hemiboreal forests. Classification and ordination. Izdatelstvo SO RAN, Novosibirsk, 232 pp. (in Russian)

Ermakov NB & Alsynbayev KS 2004. Modeling of spatial organization of woodlands in southern part of the Western Sayan. Sibirskii Ekologicheskii Zhurnal 11(5):687-702 (in Russian)

Fielding AH & Bell JF 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24:38-49. CrossRef

Franklin J 1998. Predicting the distribution of shrub species in southern California from climate and terrain-derived variables. Journal of Vegetation Science 9:733-748. CrossRef

Jarvis A, Reuter HI, Nelson A & Guevara E 2008. Hole-filled seamless SRTM data V4. International Centre for Tropical Agriculture (CIAT), available from http://srtm.csi.cgiar.org.

Guisan A, Edwards J, Thomas C & Hastie T 2002. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological Modeling 157:89-100. CrossRef

Guisan A & Hofer U 2003. Predicting reptile distributions at the mesoscale: relation to climate and topography. Journal of Biogeography 30:1233-1243. CrossRef

Hastie T & Tibshirani RJ 1990. Generalized additive models. Chapman & Hall, London, 335 pp.

Hengl T, Gruber S & Shrestha DP 2003. Digital Terrain Analysis in ILWIS, Lecture notes. International Institute for Geo-Information Science & Earth Observation (ITC), Enschede, Netherlands, 56 pp.

Horsch B, Braun G & Schmidt U 2002. Relation between landform and vegetation in alpine regions of Wallis, Switzerland. A multiscale remote sensing and GIS approach. Computers. Environment and Urban Systems 26:113-139. CrossRef

Horsch B 2003. Modeling the spatial distribution of montane and subalpine forests in the central Alps using digital elevation models. Ecological Modeling 168:267-282. CrossRef

Hutchinson MF 1989. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journal of Hydrology 106:211-232. CrossRef

Kira T 1977. A climatological interpretation of Japanese vegetation zones. In: Vegetation science and environmental protection (A. Miyawaki & R. Tuxen, eds.), pp. 21-30, Maruzen, Tokyo.

Krestov PV 2003. Forest vegetation of the easternmost Russia (Russian Far East). In: Forest vegetation of Northeast Asia (J. Kolbek, M. Srutek & E.O. Box, eds.), pp. 93-180, Kluwer Academic Publishers, Dordrecht, London, Paris, New York. CrossRef

Krestov PV 2004. Vegetation cover of the Commander Islands. Botanicheskii Zhurnal 89(11):52-74 (in Russian).

Krestov PV & Nakamura Y 2002. A phytosociological study of the Picea jezoensis forests of the Far East. Folia Geobotanica 37(4):441-473. CrossRef

Krestov PV, Omelko AM & Nakamura Y 2008. Vegetation and natural habitats of Kamchatka. Berichte der Reinhold-Tuxen-Gesellschaft 20:195-218.

Krestov PV, Ermakov NB, Osipov SV & Nakamura Y 2009. Classification and phytogeography of larch forests of northern Asia. Folia Geobotanica 44(4):323-363. CrossRef

Krestov PV, Nazimova DI, Stepanov NV & DellaSala D 2010. Humidity-dependent forests of the Russian Far East, inland Southern Siberia, and the Eastern Korean Peninsula. In: Temperate and boreal rainforests of the world: ecology and conservation (D. DellaSala, ed.), pp. 222-233, Island Press, Washington, DC.

Lehmann A, Overton JM & Leathwick JR 2002. GRASP: generalized regression analysis and spatial prediction. Ecological Modeling 157:189-207. CrossRef

Lehmann A, Leathwick JR & Overton JM 2005. Grasp v. 3.2 users manual. Switzerland, Swiss Center For Faunal Cartography, Neuchatel, available at http://www.cscf.ch/grasp.

Maggini R, Lehmann A, Zimmermann NE & Guisan A 2006. Improving generalized regression analysis for the spatial prediction of forest communities. Journal of Biogeography 33:1729-1749. CrossRef

Moore ID, Gessler PE, Nielsen GA & Peterson GA 1993. Soil attribute prediction using terrain analysis. Soil Science Society of America Journal 57:443-452. CrossRef

Nakamura Y & Krestov PV 2007. Biogeographical diversity of alpine vegetation in the oceanic regions of Northeast Asia. Berichte der Reinhold-Tuxen-Gesellschaft 19:117-129.

Nakamura Y, Krestov PV & Omelko AM 2007. Bioclimate and vegetation complexes in Northeast Asia: a first approximation to integrated study. Phytocoenologia 37(3-4):443-470. CrossRef

Nakamura Y & Krestov PV 2008. Conifer forest zone of Northeast Asia. News of Vegetation Science 12:15-21 (in Japanese).

Nelder JA & Wedderburn RWM 1972. Generalized linear Models. Journal of the Royal Statistical Society. Series A (General) 135(3):370-384. CrossRef

Overton JM, Stephens RTT, Leathwick JR & Lehmann A 2002. Information pyramids for informed biodiversity conservation. Biodiversity and Conservation 11:2093-2116. CrossRef

Pojar J, Klinka K & Meidinger DV 1987. Biogeoclimatic ecosystem classification in British Columbia. Forest Ecology and Management 22:119-154. CrossRef

Qian H, Klinka K, Okland RH, Krestov P & Kayahara GJ 2003. Understorey vegetation in boreal Picea mariana and Populus tremuloides stands in British Columbia. Journal of Vegetation Science 14:173-184. CrossRef

Rodriguez E, Morris CS, Belz JE, Chapin EC, Martin JM, Daffer W & Hensley S 2005. An assessment of the SRTM topographic products. Technical report JPL D-31639. Jet Propulsion Laboratory, Pasadena, CA.

Sarmiento G 1986. Ecological features of climate in high tropical mountains. In: High altitude tropical biogeography (F. Vuilleumier & M. Monasterio, eds.), pp. 11-45, Oxford, Oxford University Press.

Schmieder K & Lehmann A 2004. A spatio-temporal framework for ef?cient inventories of natural resources: a case study with submersed macrophytes. Journal of Vegetation Science 15:807-816. CrossRef

Schmidt F & Persson A 2003. Comparison of DEM data capture and topographic wetness indices. Precision Agriculture 4:179-192. CrossRef

Shary PA, Sharaya LS & Mitusov AV 2002. Fundamental quantitative methods of land surface analysis. Geoderma 107(1-2):1-32. CrossRef

Shary PA, Rukhovich OV & Sharaya LS 2011. Methodology for analyzing the spatial variability of wheat yields, depending on agrolandscape conditions. Agrochimia 2:57-81 (in Russian).

Sukhanov VV, Petropavlovsky BS & Chavtur NA 1994. Vegetation communities structure of the Sikhote-Alin reserve. Dalnauka, Vladivostok, 220 pp. (in Russian).

Swets JA 1988. Measuring the accuracy of diagnostic systems. Science 240:1285-1293. CrossRef

Tucker CJ, Grant DM & Dykstra JD 2004. NASAs Global Orthorectified Landsat Data Set. Photogrammetric Engineering & Remote Sensing 70:313-322. CrossRef

USGS Shuttle Radar Topography Mission. 2000, available at http://srtm.usgs.gov.

van Niel KP, Laffan SW & Lees BG 2004. Effect of error in the DEM on environmental variables for predictive vegetation modeling. Journal of Vegetation Science 15:747-756. CrossRef

Vitvitskii GN 1961. Climate. In: The Far East. Izdatelstvo AN SSSR, Moscow, pp. 93-115 (in Russian).

Wardle P 1985. New Zealand timberlines. A study of forest limits in the Crow Valley near Arthurs Pass, Canterbury. New Zealand Journal of Botany 23:235-261. CrossRef

Wood J 2003. The geomorphological characterization of digital elevation models. Department of Information Science, City University, London.

Yakovleva AN 2002. Modeling of forest communities distribution based on their relationships with environmental variables. In: Proceedings of the conference Dynamics and current state of Russian Far East forests, pp. 148-154, DALNIILKH, Khabarovsk (in Russian).

Yakovleva AN 2003. Ecological-phytocenotic characteristic of Verhneussuriysky biostation forests. In: Proceedings of the conference Ecology and protection of the Far East environment, pp. 117-118, Teachers training institute, Komsomolsk-na-Amure.

Yee TW & Mitchell ND 1991. Generalized additive models in plant ecology. Journal of Vegetation Science 2:587-602. CrossRef

Zimmermann NE & Kienast F 1999. Predictive mapping of alpine grasslands in Switzerland: species versus community approach. Journal of Vegetation Science 10:469-482. CrossRef







© 2012-2022 Botanica Pacifica