Botanica Pacifica

Research papers

Botanica Pacifica. A journal of plant science and conservation 2023. 12(2):172-180
Article first published online: 16 JUN 2023 | DOI: 10.17581/bp.2023.12201

Do afroalpine plants differ from other alpine plants by their leaf functional traits?

Vladimir G. Onipchenko 1,5 ORCID, Aliy M. Kipkeev 1 ORCID, Natalia A. Kopylova 1 ORCID, Justine M. Nyaga 2 ORCID, Tatiana G. Elumeeva 1 ORCID, Ksenia V. Dudova 1 ORCID, Asem A. Akhmetzhanova 1 ORCID, Alexei V. Tiunov 3 ORCID, Mikhail M. Karpukhin 4 ORCID & Mikhail I. Makarov 4 ORCID

1 Lomonosov Moscow State University, Faculty of Biology, Dept. Ecology and Plant Geography, Moscow, Russia
2 University of Embu, Dept. Biological Sciences, Embu, Kenya
3 A.N. Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
4 Lomonosov Moscow State University, Faculty of Soil Science, Moscow, Russia
5 U.D. Aliyev Karachay-Cherkess State University, Karachaevsk, Russia


Afroalpine plants develop under specific climate with great daily fluctuations and weak seasonal dynamics of temperature. Do leaf functional traits of the plants in Mt. Kenya differ from those of temperate plants in NW Caucasus? To answer this question, we conducted a comparative study at the Teleki valley (4000–4500 m a.s.l.), Mt. Kenya, Kenya, and Teberda national park (2600–2900 m a.s.l.), the Caucasus, Russia. We measured leaf area, fresh and dry mass, C, N, P, δ13C, δ15N and derivative traits (specific leaf area – SLA, leaf dry matter content – LDMC, C:N and N:P ratios) for 48 species at the Teleki valley, and the same traits, except for the δ13C and δ15N, for 141 species in the Teberda national park. The CSR-strategies scores were calculated. We applied the Principal Component Analysis to reveal the main patterns of trait variation. Leaf dry mass of Mt. Kenya alpine plants ranged from 0.27 mg (Sagina afroalpina) to 14.0 g (Dendrosenecio keniodendron). Leaf area, mass and LDMC of alpine plants in both regions did not differ significantly. The SLA of Mt. Kenya’s plants varied about 20-fold: from 2.6 mm2 mg-1 (Festuca pilgeri) to 39.8 mm2 mg-1 (Cineraria deltoidea), and Caucasian plants had higher SLA. N and P leaf concentrations were higher, but C lower in Caucasian plants than in Kenyan. Leaf N:P ratio was similar for both regions, while C:N ratio was higher in Kenyan plants. Species of “rosette” trees (Dendrosenecio spp.) differed from other species by size characteristics (maximal leaf dry mass and area were in Dendrosenecio keniodendron), as well as correspondingly higher investment to mechanical tissues (high C:N ratio, low SLA). By the other functional traits, “rosette” trees were similar to many other alpine plants. Thus, afroalpine plants of Mt. Kenya are close to temperate alpine plants by some leaf functional traits, but possess higher stress-tolerance.

Онипченко В.Г., Кипкеев А.М., Копылова Н.А., Ниага Дж.М., Елумеева Т.Г., Дудова К.В., Ахметжанова А.А., Тиунов А.В., Карпухин М.М., Макаров М.И. Отличаются ли афро-альпийские растения по своим функциональным признакам от других альпийских растений? Афро-альпийские растения развиваются в условиях специфического климата с большими суточными флуктуациями и слабой сезонной динамикой температуры. Отличаются ли функциональные признаки листьев растений с горы Кения от признаков растений умеренного климата на северо-западном Кавказе? Чтобы ответить на этот вопрос, мы провели сравнительное исследование в долине Телеки (4000–4500 м н.у.м.), гора Кения, Кения, и в Тебердинском национальном парке (2600–2900 м н.у.м.), Кавказ, Россия. Мы измерили площадь листа, влажную и сухую массу, C, N, P, δ13C, δ15N и расчетные величины (удельная листовая поверхность – УЛП, содержание сухого вещества – ССВ, отношения C:N и N:P) для 48 видов в долине Телеки и те же самые признаки, кроме δ13C и δ15N, для 141 вида в Тебердинском национальном парке. Также были рассчитан вклад CSR-стратегий. Чтобы выявить основные закономерности изменчивости признаков, мы провели анализ главных компонент. Масса сухого листа альпийских растений с горы Кения варьировалась от 0,27 мг (Sagina afroalpina) до 14,0 г (Dendrosenecio keniodendron). Площадь листа, масса и ССВ альпийских растений в обоих регионах значимо не различались. У растений с г. Кения УЛП варьировалось почти в 20 раз: от 2.6 мм2 мг-1 (Festuca pilgeri) до 39.8 мм2 мг-1 (Cineraria deltoidea), при этом у растений Кавказа УЛП была выше. У кавказский растений содержание N и P в листьях было выше, а содержание C ниже, чем в кенийских. Отношение N:P было сходно в обоих регионах, тогда как отношение C:N было выше у растений из Кении. Виды «розеточных деревьев» (Dendrosenecio spp.) отличались от других видов размерными характеристиками (максимальная площадь и масса сухого листа отмечены у Dendrosenecio keniodendron), а также соответствующим высоким вкладом в механические ткани (высокое отношение C:N, низкая УЛП). По остальным функциональным признакам «розеточные деревья» были схожи со многими другими альпийскими растениями. Таким образом, по ряду функциональных признаков листьев афро-альпийские растения с г. Кения близки ко многим другим альпийским растениям умеренной зоны, но обладают большей стресс-толерантностью.

Keywords: afroalpine, plant functional traits, CSR-strategies, Kenya, Caucasus, leaf area, specific leaf area, plant nutrient content, афро-альпийские растения, функциональные признаки, CSR-стратегии, Кения, Кавказ, площадь листа, удельная листовая поверхность, содержание элементов минерального питания

PDF         SUPPLEMENTARY MATERIALS: Electronic Appendix


References

Anthelme, F. & O. Dangles 2012. Plant-plant interactions in tropical alpine environments. Perspectives in Plant Ecology, Evolution and Systematics 14(5):363-372. CrossRef

Bhatt, N. 1991. The geology of Mount Kenya. In: Guide to Mount Kenya and Kilimanjaro (I. Allen, ed.), pp. 54-66, The Mountain Club of Kenya, Nairobi KE.

Bloom, A.A., J.-F. Exbrayat, I.R. van der Velde, L. Feng & M. Williams 2016. The decadal state of the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and resistance times. Proceedings of the National Academy of Sciences USA 113(5):1285-1290. CrossRef

Cabrera, M. & J.F. Duivenvoorden 2020. Drivers of aboveground biomass of high mountain vegetation in the Andes. Acta Oecologica 102:103504. CrossRef

Callis-Deueh, K., P. Vittoz, E. Defossez & S. Rasmann 2017. Community-level relaxation of plant defenses against herbivores at high elevation. Plant Ecology, 218(3):291-304. CrossRef

Coe, M.J. 1967. The ecology of the alpine zone of Mount Kenya. (Monographiae Biologicae, 17). Dr. W. Junk, The Hague. CrossRef

Cornelissen, J.H.C., S. Lavorel, E. Garnier, S. Díaz, N. Buchmann, D.E. Gurvich, P.B. Reich et al. 2003. A handbook of protocols for standardized and easy measurements of plant functional traits worldwide. Australian Journal of Botany 51(4):335-380. CrossRef

Craine, J.M., A.J. Elmore, M.P. Aidar, M. Bustamante, T.E. Dawson, E.A. Hobbie et al. 2009. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytologist 183(4):980-992. CrossRef

Craine, J.M. & W.G. Lee 2003. Covariation in leaf and root traits for native and non-native grasses along an altitudinal gradient in New Zealand. Oecologia 134(4):471-478. CrossRef

Cruz, M. & E. Lasso 2021. Insights into the functional ecology of páramo plants in Columbia. Biotropica 53(5):1415-1431. CrossRef

de Bello, F., S. Lavorel, S. Lavergne, C.H. Albert, I. Boulangeat, F. Mazel & W. Thuiller 2013. Hierarchical effects of environmental filters on the functional structure of plant communities: a case study in the French Alps. Ecography 36(3):393-402. CrossRef

De Frenne, P., B.J. Graae, F. Rodriduez-Sanchez, A. Kolb, O. Chabrerie, G. Decocq et al. 2013. Latitudinal gradients as natural laboratories to infer species' responses to temperature. Journal of Ecology 101(3):784-795. CrossRef

De Long, J.R., M.K. Sundqvist, M.J. Gundale, R. Giesler & D. Wardle 2016. Effects of elevation and nitrogen and phosphorus fertilization on plant defence compounds in subarctic tundra heath vegetation. Functional Ecology 30(2): 314-325. CrossRef

Diemer, M., C. Körner & S. Prock 1992. Leaf life spans in wild perennial herbaceous plants: a survey and attempts at a functional interpretation. Oecologia 89(1):10-16. CrossRef

Doležal, J., M. Dvorský, M. Kopecký, P. Liancourt, I. Hiiesalu, M. Macek et al. 2016. Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Scientific Reports 6:24881. CrossRef

Dvorský, M., J. Altman, M. Kopecký, Z. Chlumská, K. Řeháková, K. Janatková & J. Doležal 2016. Vascular plants at extreme elevations in eastern Ladakh, northwest Himalayas. Plant Ecology and Diversity 8(4):571-584. CrossRef

Elumeeva, T.G., V.G. Onipchenko & Y. Wu 2015. Leaf functional traits of plants of alpine pastures at the Eastern Qinghai-Tibetan Plateau. Moscow University Biological Sciences Bulletin 70(1):46-52. CrossRef

Farquhar, G.D., M.H. O'Leary & J.A. Berry 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology 9:121-137. CrossRef

Fisher, J.B., Y. Malhi, I. Cuba Torres, D.B. Metcalfe, M.J. van de Weg, P. Meir et al. 2013. Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes. Oecologia 172(3):889-902. CrossRef

Gehrke, B. & H.P. Linder 2014. Species richness, endemism and species composition in the tropical Afroalpine flora. Alpine Botany 124(2):165-177. CrossRef

Grime, J.P. 1979. Plant strategies and vegetation processes. John Wiley & Sons, Chichester, 371 pp.

Grime, J.P. 2001. Plant strategies, vegetation processes, and ecosystem properties. 2nd edition. John Wiley & Sons, Chichester, 417 pp.

Grime, J.P., K. Thompson, R. Hunt, J.G. Hodgson, J.H.C. Cornelissen, I.H. Rorison et al. 1997. Integrated screening validates primary axes of specialization in plants. Oikos 79(2):259-281. CrossRef

Halloy, S.R.P. & A.F. Mark 1996. Comparative leaf morphology spectra of plant communities in New Zealand, the Andes and the European Alps. Journal of the Royal Society of New Zealand 26(1):41-78. CrossRef

Han, W., J. Fang, D. Guo & Y. Zhang 2005. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist 168(2):377-385. CrossRef

Hedberg, O. 1964. Features of Afro-Alpine plant ecology. Acta Phytogeographica Svecica 49:1-44.

Hemp, A. 2006. Continuum or zonation? Altitudinal gradients in the forest vegetation of Mt Kilimanjaro. Plant Ecology 184(1):27-42. CrossRef

Huber, E., W. Wanek, M. Gottfried, H. Pauli, P. Schweiger, S.K. Arndt et al. 2007. Shift in plant-soil nitrogen dynamics of an alpine-nival ecotone. Plant and Soil 301(1-2): 65-76. CrossRef

Hulshof, C.M., C. Violle, M.J. Spasojevic, B. McGill, E. Damschen, S. Harrison & B.J. Enquist 2013. Intra-specific and inter-specific variation in specific leaf area reveal the importance of abiotic and biotic drivers of species diversity across elevation and latitude. Journal of Vegetation Science 24(5):921-931. CrossRef

Joswig, J.S., C. Wirth, M.C. Schuman, J. Kattge, B. Reu, I.J. Wright et al. 2022. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nature Ecology and Evolution 6(1):36-50. CrossRef

Kattge, J., S. Díaz, S. Lavorel, I.C. Prentice, P. Leadley, G. Bönisch et al. 2011. TRY - a global database of plant traits. Global Change Biology 17(9):2905-2935. CrossRef

Kattge, J., G. Bönisch, S. Díaz, S. Lavorel, I.C. Prentice, P. Leadley et al. 2020. TRY plant trait database - enhanced coverage and open access. Global Change Biology 26(1):119-188. CrossRef

Kichenin, E., D.A. Wardle, D.A. Peltzer, C.W. Morse & G.T. Freschet 2013. Contrasting effects of plant interand intraspecific variation on community-level trait measures along an environmental gradients. Functional Ecology 27(5):1254-1261. CrossRef

Körner, C., M. Neumayer, S.P. Menendez-Riedl & A. Smeets-Scheel 1989. Functional morphology of mountain plants. Flora 182(5-6):353-383. CrossRef

Körner, C. 2003. Alpine plant life, 2nd edition. Springer, Berlin, 344 pp. CrossRef

Körner, C. 2011. Coldest places on Earth with angiosperm plant life. Alpine Botany 121(1):11-22. CrossRef

Körner, C., S. Leuzinger, S. Riedl, R.T. Siegwolf & L. Streule 2016. Carbon and nitrogen stable isotope signals for an entire alpine flora, based on herbarium samples. Alpine Botany 126(2):153-166. CrossRef

Laiolo, P., J.C. Illera, L. Meléndez, A. Segura & J.R. Obeso 2015. Abiotic, biotic, and evolutionary control of the distribution of C and N isotopes in food webs. American Naturalist 185(2):169-182. CrossRef

Mahaney, W.C. 1990. Ice on the equator: quaternary geology of Mount Kenya. WmCaxton Ltd., Sister Bay,WI, US

Makarov, M.I., V.G. Onipchenko, T.I. Malysheva, R.S.P. van Logtestijn, N.A. Soudzilovskaia & J.H.C. Cornelissen 2014. Determinants of 15N natural abundance in leaves of co-occurring plant species and types within an alpine lichen heath in the Northern Caucasus. Arctic, Antarctic and Alpine Research 46(3):581-590. CrossRef

Martinelli, L.A., M.C. Piccolo, A.R. Townsend, P.M. Vitousek, E. Cuevas, W. McDowell et al. 1999. Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46(1-3):45-65. CrossRef

Mizuno, K. & T. Fujita 2014. Vegetation succession on Mt. Kenya in relation to glacial fluctuation and global warming. Journal of Vegetation Science 25(2):559-570. CrossRef

Oksanen, J., G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn et al. 2020. vegan: Community Ecology Package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan Last accessed 01.07.2021.

Onipchenko, V.G. (ed.) 2004. Alpine ecosystems in the Northwest Caucasus. Kluwer Academic Publishers, Dordrecht, 410 pp. CrossRef

Onipchenko, V.G., K.V. Dudova, A.A. Akhmetzhanova, M.I. Khomutovskiy, T.M. Dzhatdoeva, D.K. Tekeev & T.G. Elumeeva 2020a. Which plant strategies are related to dominanсе in alpine communities? Zhurnal obschei biologii 81(1):37-46. CrossRef

Onipchenko, V.G., N.A. Kopylova, A.M. Kipkeev, T.G. Elumeeva, A. Azovsky, S.V. Dudov & J.M. Nyaga 2020b. Low floristic richness of afro-alpine vegetation on Mount Kenya is related to its small area. Alpine Botany 130(1):31-39. CrossRef

Pérez-Harguindeguy, N., S. Díaz, E. Garnier, S. Lavorel, H. Poorter, P. Jaureguiberry et al. 2013. New handbook for standardized measurement of plant functional traits worldwide. Australian Journal of Botany 61(3):167-234. CrossRef

Pierce, S., R.M. Ceriani, R. Andreis, A. de Luzzaro & B. Cerabolini 2007. The leaf economics spectrum of Poaceae reflects variation in survival strategies. Plant Biosystems 141(3):337-343. CrossRef

Pierce, S., D. Negreiros, B.E.L. Cerabolini, J. Kattge, S. Diaz, M. Kleyer et al. 2017. A global method for calculating plant CSR ecological strategies applied across biomes world-wide. Functional Ecology 31(2):444-457. CrossRef

POWO 2023. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; http://www.plantsoftheworldonline.org/ Last accessed 13 June 2023.

Prock, S. & C. Körner 1996. A cross-continental comparison of phenology, leaf dynamics and dry matter allocation in arctic and temperate zone herbaceous plants from contrasting altitudes. Ecological Bulletin 45:93-103.

Rehder, H., E. Beck, & J.O. Kokwaro 1988. The afroalpine plant communities of Mt. Kenya (Kenya). Phytocoenologia 16(4):433-463. CrossRef

Reich, P.B. & J. Oleksyn 2004. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of National Academy of Sciences USA 101(30):11001-11006. CrossRef

Rundel, P.W., A.P. Smith & F.C. Meinzer, eds. 1994. Tropical alpine environments: plant form and function. Cambridge Univercity Press, Cambridge. CrossRef

Song, L., J. Fan, W. Harris, S. Wu, H. Zhong, Y.-C. Zhou, N. Wang, S. Zhu 2012. Adaptive characteristics of grassland community structure and leaf traits along an altitudinal gradient on a subtropical mountain in Chongqing, China. Plant Ecology 213(1):89-101. CrossRef

Tieszen, L.L., M.M. Senyimba, S.K. Imbamba & J.H. Troughton 1979. The distribution of C3 and C4 grasses and carbon isotope discrimination along an altitudinal and moisture gradient in Kenya. Oecologia 37(3):337-350. CrossRef

Westoby, M. 1998. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil 199(2):213-227. Wrigth, I.J., N. Dong, V. Maire, I.C. Prentice, M. Westoby, S. Diaz et al. 2017. Global climatic drivers of leaf size. Science 357(6354):917-921. CrossRef

Yang, X., Z. Huang, K. Zhang & J.H.C. Cornelissen 2015. C:N:P stoichiometry of Artemisia species and close relatives across northern China: unravelling effects of climate, soil and taxonomy. Journal of Ecology 103(4): 1020-1031. CrossRef

Zhao, N., N. He, Q. Wang, X. Zhang, R. Wang, Z. Xu & G. Yu 2014. The altitudal patterns of leaf C:N:P stoichiometry are regulated by plant growth form, climate and soil on Changbai Mountain, China. PLOS ONE 9:e95-196. CrossRef

Zhou, Y., J. Fan, W. Zhang, W. Harris, H. Zhong, Z. Hu & L. Song 2011. Factors influencing altitudal patterns of C3 plant foliar carbon isotope composition of grasslands on the Qinghai-Tibet Plateau, China. Alpine Botany 121(2):79-90. CrossRef

Zhou, Y.-C., X.L. Cheng, J.W. Fan & W. Harris 2016. Relationship between foliar carbon isotope composition and elements of C3 species in grasslands of Inner Mongolia, China. Plant Ecology 217(7):883-897. CrossRef

Zhou, Y., S. Chen, G. Hu, G. Mwachala, X. Yan & Q. Wang 2018. Species richness and phylogenetic diversity of seed plants across vegetation zones of Mount Kenya, East Africa. Ecology and Evolution 8(17):8930-8939. CrossRef

Zhu, Y., R.T.W. Siegwolf, W. Durka & C. Körner 2010. Phylogenetically balanced evidence for structural and carbon isotope responses in plants along elevational gradients. Oecologia 162(4):853-863. CrossRef





© The Author(s). 2023 Open Access (CC) BY-NC license: https://creativecommons.org/licenses/by-nc/4.0/